Banner
五金詞典
滲氮


滲氮,是在一定溫度下一定介質中使氮原子滲入工件表層的化學熱處理工藝。常見有液體滲氮、氣體滲氮、離子滲氮。傳統的氣體滲氮是把工件放入密封容器中,通以流動的氨氣並加熱,保溫較長時間後,氨氣熱分解産生活性氮原子,不斷吸附到工件表面,並擴散滲入工件表層內,從而改變表層的化學成分和組織,獲得優良的表面性能。如果在滲氮過程中同時滲入碳以促進氮的擴散,則稱爲氮碳共滲。常用的是氣體滲氮和離子滲氮。

原理應用


  滲入鋼中的氮一方面由表及裏與鐵形成不同含氮量的氮化鐵,一方面與鋼中的合金元素結合形成各種合金氮化物,特別是氮化鋁、氮化鉻。這些氮化物具有很高的硬度、熱穩定性和很高的彌散度,因而可使滲氮後的鋼件得到高的表面硬度、耐磨性、疲勞強度、抗咬合性、抗大氣和過熱蒸汽腐蝕能力、抗回火軟化能力,並降低缺口敏感性。與滲碳工藝相比,滲氮溫度比較低,因而畸變小,但由于心部硬度較低,滲層也較淺,一般只能滿足承受輕、中等載荷的耐磨、耐疲勞要求,或有一定耐熱、耐腐蝕要求的機器零件,以及各種切削刀具、冷作和熱作模具等。滲氮有多種方法,常用的是氣體滲氮和離子滲氮。
  


鋼鐵滲氮的研究始于20世紀初,20年代以後獲得工業應用。最初的氣體滲氮,僅限于含鉻、鋁的鋼,後來才擴大到其他鋼種。從70年代開始,滲氮從理論到工藝都得到迅速發展並日趨完善,適用的材料和工件也日益擴大,成爲重要的化學熱處理工藝之一。


氣體滲氮



一般以提高金屬的耐磨性爲主要目的,因此需要獲得高的表面硬度。它適用于38CrMnAc等滲氮鋼。滲氮後工件表面硬度可達HV850~1200。滲氮溫度低,工件畸變小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主軸、磨床主軸、氣缸套筒等。但由于滲氮層較薄,不適于承受重載的耐磨零件。
  

氣體參氮可采用一般滲氮法(即等溫滲氮)或多段(二段、三段)滲氮法。前者是在整個滲氮過程中滲氮溫度和氨氣分解率保持不變。溫度一般在480~520℃之間,氨氣分解率爲15~30%,保溫時間近80小時。這種工藝適用于滲層淺、畸變要求嚴、硬度要求高的零件,但處理時間過長。多段滲氮是在整個滲氮過程中按不同階段分別采用不同溫度、不同氨分解率、不同時間進行滲氮和擴散。整個滲氮時間可以縮短到近50小時,能獲得較深的滲層,但這樣滲氮溫度較高,畸變較大。
 

 
還有以抗蝕爲目的的氣體滲氮,滲氮溫度在
550~700℃之間,保溫0.5~3小時,氨分解率爲35~70%,工件表層可獲得化學穩定性高的化合物層,防止工件受濕空氣、過熱蒸汽、氣體燃燒産物等的腐蝕。
  


正常的氣體滲氮工件,表面呈銀灰色。有時,由于氧化也可能呈藍色或黃色,但一般不影響使用。


離子滲氮



又稱輝光滲氮,是利用輝光放電原理進行的。把金屬工件作爲陰極放入通有含氮介質的負壓容器中,通電後介質中的氮氫原子被電離,在陰陽極之間形成等離子區。在等離子區強電場作用下,氮和氫的正離子以高速向工件表面轟擊。離子的高動能轉變爲熱能,加熱工件表面至所需溫度。由于離子的轟擊,工件表面産生原子濺射,因而得到淨化,同時由于吸附和擴散作用,氮遂滲入工件表面。
  


與一般的氣體滲氮相比,離子滲氮的特點是:①可適當縮短滲氮周期;②滲氮層脆性小;③可節約能源和氨的消耗量;④對不需要滲氮的部分可屏蔽起來,實現局部滲氮;⑤離子轟擊有淨化表面作用,能去除工件表面鈍化膜,可使不鏽鋼、耐熱鋼工件直接滲氮。⑥滲層厚度和組織可以控制。離子滲氮發展迅速,已用于機床絲杆、齒輪、模具等工件。


氮碳共滲


  又稱軟氮化或低溫氮碳共滲,即在鐵 氮共析轉變溫度以下,使工件表面在主要滲入氮的同時也滲入碳。碳滲入後形成的微細碳化物能促進氮的擴散,加快高氮化合物的形成。這些高氮化合物反過來又能提高碳的溶解度。碳氮原子相互促進便加快了滲入速度。此外,碳在氮化物中還能降低脆性。氮碳共滲後得到的化合物層韌性好,硬度高,耐磨,耐蝕,抗咬合。
  


常用的氮碳共滲方法有液體法和氣體法。處理溫度530~570℃,保溫時間1~3小時。早期的液體鹽浴用氰鹽,以後又出現多種鹽浴配方。常用的有兩種:中性鹽通氨氣和以尿素加碳酸鹽爲主的鹽,但這些反應産物仍有毒。氣體介質主要有:吸熱式或放熱式氣體(見可控氣氛)加氨氣;尿素熱分解氣;滴注含碳、氮的有機溶劑,如甲酰胺、三乙醇胺等。
  


氮碳共滲不僅能提高工件的疲勞壽命、耐磨性、抗腐蝕和抗咬合能力,而且使用設備簡單,投資少,易操作,時間短和工件畸變小,有時還能給工件以美觀的外表。


輝光離子氮化


  一、優點:滲氮時間短,質量容易控制,氮化層耐疲勞、有高強度,由于氮化溫度在520 540,所以工件變形小,表面抗磁性高。
  


二、缺點:設備控制複雜,爐溫均勻性不好。